Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics.
نویسندگان
چکیده
Organic anion transporter (OAT) genes have been implicated in renal secretion of organic anions, but the individual in vivo contributions of OAT1 (first identified as NKT) and OAT3 remain unclear. Potential substrates include loop diuretics (e.g., furosemide) and thiazide diuretics (e.g., bendroflumethiazide), which reach their tubular sites of action mainly by proximal tubular secretion. Previous experiments in Oat1 knockout (-/-) mice revealed an almost complete loss of renal secretion of the prototypic organic anion p-aminohippurate (PAH) and a role of OAT1 in tubular secretion of furosemide (Eraly SA, Vallon V, Vaughn D, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. J Biol Chem 281: 5072-5083, 2006). In this study we found that both furosemide and bendroflumethiazide inhibited mOat1- and mOat3-mediated uptake of a labeled tracer in Xenopus oocytes injected with cRNA, consistent with their being substrates for mouse OAT1 and OAT3. Experiments in Oat3(-/-) mice revealed intact renal secretion of PAH, but the dose-natriuresis curves for furosemide and bendroflumethiazide were shifted to the right and urinary furosemide excretion was impaired similar to the defect in Oat1(-/-) mice. Thus, whereas OAT1 (in contrast to OAT3) is the classic basolateral PAH transporter of the proximal tubule, both OAT1 and OAT3 contribute similarly to normal renal secretion of furosemide and bendroflumethiazide, and a lack of either one is not fully compensated by the other. Although microarray expression analysis in the kidneys of Oat1(-/-) and Oat3(-/-) mice revealed somewhat altered expression of a small number of transport-related genes, none were common to both knockout models. When searching for polymorphisms involved in human diuretic responsiveness, it may be necessary to consider both OAT1 and OAT3, among other genes.
منابع مشابه
Altered Renal Expression of Relevant Clinical Drug Transporters in Different Models of Acute Uremia in Rats. Role of Urea Levels.
BACKGROUND/AIMS Organic anion transporter 1 (Oat1) and 3 (Oat3) are organic anion transporters that play critical roles in the body disposition of numerous clinically important drugs. We investigated the effects of acute uremia on the renal expression of Oat1 and Oat3 in three in vivo experimental models of acute kidney injury (AKI): induced by ischemia, by ureteral obstruction and by the admin...
متن کاملDifferential Interaction of Dantrolene, Glafenine, Nalidixic Acid, and Prazosin with Human Organic Anion Transporters 1 and 3.
In renal proximal tubule cells, the organic anion transporters 1 and 3 (OAT1 and OAT3) in the basolateral membrane and the multidrug resistance-associated protein 4 (MRP4) in the apical membrane share substrates and co-operate in renal drug secretion. We hypothesized that recently identified MRP4 inhibitors dantrolene, glafenine, nalidixic acid, and prazosin also interact with human OAT1 and/or...
متن کاملArsenic and Mercury Containing Traditional Chinese Medicine (Realgar and Cinnabar) Strongly Inhibit Organic Anion Transporters, Oat1 and Oat3, In Vivo in Mice
Toxic heavy metals, including mercury (Hg) and arsenic (As), accumulate preferentially in kidneys and always cause acute renal failure. The aim of this study was to investigate whether these samples affect organic anion transporters, Oat1 and Oat3, in vivo in mice kidney. Mice (n = 10) were orally treated with investigational samples. After last administration, all mice were i.v. p-aminohippuri...
متن کاملInteractions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): a study on herb-drug interactions
BACKGROUND Herb-drug interactions (HDIs) resulting from concomitant use of herbal products with clinical drugs may cause adverse reactions. Organic anion transporter 1 (OAT1) and 3 (OAT3) are highly expressed in the kidney and play a key role in the renal elimination of substrate drugs. So far, little is known about the herbal extracts that could modulate OAT1 and OAT3 activities. METHODS HEK...
متن کاملQuantitative prediction of human renal clearance and drug-drug interactions of organic anion transporter substrates using in vitro transport data
Organic anion transporters (OATs) are important in the renal secretion, and thus the clearance, of many drugs; and their functional change can result in pharmacokinetic variability. In this study, we applied transport rates measured in vitro using OAT-transfected human embryonic kidney cells to predict human renal secretory and total renal clearance of 31 diverse drugs. Selective substrates to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 294 4 شماره
صفحات -
تاریخ انتشار 2008